Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.323
1.
Artif Cells Nanomed Biotechnol ; 52(1): 291-299, 2024 Dec.
Article En | MEDLINE | ID: mdl-38733371

Haemorrhagic shock is a leading cause of death worldwide. Blood transfusions can be used to treat patients suffering severe blood loss but donated red blood cells (RBCs) have several limitations that limit their availability and use. To solve the problems associated with donated RBCs, several acellular haemoglobin-based oxygen carriers (HBOCs) have been developed to restore the most important function of blood: oxygen transport. One promising HBOC is the naturally extracellular haemoglobin (i.e. erythrocruorin) of Lumbricus terrestris (LtEc). The goal of this study was to maximise the portability of LtEc by lyophilising it and then testing its stability at elevated temperatures. To prevent oxidation, several cryoprotectants were screened to determine the optimum formulation for lyophilisation that could minimise oxidation of the haem iron and maximise recovery. Furthermore, samples were also deoxygenated prior to storage to decrease auto-oxidation, while resuspension in a solution containing ascorbic acid was shown to partially reduce LtEc that had oxidised during storage (e.g. from 42% Fe3+ to 11% Fe3+). Analysis of the oxygen equilibria and size of the resuspended LtEc showed that the lyophilisation, storage, and resuspension processes did not affect the oxygen transport properties or the structure of the LtEc, even after 6 months of storage at 40 °C. Altogether, these efforts have yielded a shelf-stable LtEc powder that can be stored for long periods at high temperatures, but future animal studies will be necessary to prove that the resuspended product is a safe and effective oxygen transporter in vivo.


Freeze Drying , Hemoglobins , Oligochaeta , Animals , Oligochaeta/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Oxygen/metabolism , Oxygen/chemistry , Oxidation-Reduction , Blood Substitutes/chemistry
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731919

Smoke intoxication is a central event in mass burn incidents, and toxic smoke acts at different levels of the body, blocking breathing and oxygenation. The majority of these patients require early induction of anesthesia to preserve vital functions. We studied the influence of hemoglobin (HMG) and myoglobin (MGB) blockade by hydrochloric acid (HCl) in an interaction model with gaseous anesthetics using molecular docking techniques. In the next part of the study, molecular dynamics (MD) simulations were performed on the top-scoring ligand-receptor complexes to investigate the stability of the ligand-receptor complexes and the interactions between ligands and receptors in more detail. Through docking analysis, we observed that hemoglobin creates more stable complexes with anesthetic gases than myoglobin. Intoxication with gaseous hydrochloric acid produces conformational and binding energy changes of anesthetic gases to the substrate (both the pathway and the binding site), the most significant being recorded in the case of desflurane and sevoflurane, while for halothane and isoflurane, they remain unchanged. According to our theoretical model, the selection of anesthetic agents for patients affected by fire smoke containing hydrochloric acid is critical to ensure optimal anesthetic effects. In this regard, our model suggests that halothane and isoflurane are the most suitable choices for predicting the anesthetic effects in such patients when compared to sevoflurane and desflurane.


Anesthesia, General , Molecular Docking Simulation , Molecular Dynamics Simulation , Humans , Myoglobin/chemistry , Hydrochloric Acid/chemistry , Smoke/adverse effects , Anesthetics, Inhalation/chemistry , Hemoglobins/chemistry , Hemoglobins/metabolism , Halothane/chemistry , Binding Sites
3.
J Oleo Sci ; 73(5): 675-681, 2024.
Article En | MEDLINE | ID: mdl-38692891

Protein soils must be removed for both appearance and hygienic reasons. They are denatured by heat treatment or bleaching and cleaned using enzymes. Among the various types of protein soils, blood soils are the most noticeable and known to be denatured by heat and bleaching by oxidation. We verified herein that the detergency of heat and oxidatively denatured hemoglobin is greatly improved by the enzyme immersing treatment in the detergency with SDS and can be analyzed using the probability density functional method. The probability density functional method evaluates the cleaning power by assuming that the adhesion and cleaning force of soils are not uniquely determined, but instead have a distribution in intensity, with a usefulness that had recently been demonstrated. This analytical method showed that the cleaning power of the enzyme immersing treatment improved when the soil adhesive force was decreased due to denatured protein degradation, even though the cleaning power of the SDS remained unchanged, and the values were consistent with those in the cleaning test. In conclusion, the probability density functional method can be used to analyze enzymatic degradation of denatured protein soils and the resulting changes in their detergency.


Protein Denaturation , Sodium Dodecyl Sulfate/chemistry , Oxidation-Reduction , Hot Temperature , Hemoglobins/chemistry , Soil/chemistry , Probability
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673758

Animal tumors serve as reasonable models for human cancers. Both human and animal tumors often reveal triplet EPR signals of nitrosylhemoglobin (HbNO) as an effect of nitric oxide formation in tumor tissue, where NO is complexed by Hb. In search of factors determining the appearance of nitrosylhemoglobin (HbNO) in solid tumors, we compared the intensities of electron paramagnetic resonance (EPR) signals of various iron-nitrosyl complexes detectable in tumor tissues, in the presence and absence of excess exogenous iron(II) and diethyldithiocarbamate (DETC). Three types of murine tumors, namely, L5178Y lymphoma, amelanotic Cloudman S91 melanoma, and Ehrlich carcinoma (EC) growing in DBA/2 or Swiss mice, were used. The results were analyzed in the context of vascularization determined histochemically using antibodies to CD31. Strong HbNO EPR signals were found in melanoma, i.e., in the tumor with a vast amount of a hemorrhagic necrosis core. Strong Fe(DETC)2NO signals could be induced in poorly vascularized EC. In L5178Y, there was a correlation between both types of signals, and in addition, Fe(RS)2(NO)2 signals of non-heme iron-nitrosyl complexes could be detected. We postulate that HbNO EPR signals appear during active destruction of well-vascularized tumor tissue due to hemorrhagic necrosis. The presence of iron-nitrosyl complexes in tumor tissue is biologically meaningful and defines the evolution of complicated tumor-host interactions.


Ditiocarb , Hemoglobins , Nitric Oxide , Animals , Nitric Oxide/metabolism , Ditiocarb/pharmacology , Ditiocarb/chemistry , Mice , Hemoglobins/metabolism , Hemoglobins/chemistry , Electron Spin Resonance Spectroscopy/methods , Spin Trapping/methods , Neovascularization, Pathologic/metabolism , Cell Line, Tumor , Disease Models, Animal , Mice, Inbred DBA , Ferrous Compounds/chemistry
5.
Int J Biol Macromol ; 267(Pt 1): 131457, 2024 May.
Article En | MEDLINE | ID: mdl-38588836

Human hemoglobin (Hb) is a tetrameric protein consisting of two α and two ß subunits that can adopt a low-affinity T- and high-affinity R-state conformations. Under physiological pH conditions, histidine (His) residues are the main sites for proton binding or release, and their protonation states can affect the T/R-state conformation of Hb. However, it remains unclear which His residues can effectively affect the Hb conformation. Herein, the impact of the 38 His residues of Hb on its T/R-state conformations was evaluated using constant-pH molecular dynamics (CpHMD) simulations at physiological pH while focusing on the His protonation states. Overall, the protonation states of some His residues were found to be correlated with the Hb conformation state. These residues were mainly located in the proximity of the heme (α87 and ß92), and at the α1ß2 and α2ß1 interfaces (α89 and ß97). This correlation may be partly explained by how easily hydrogen bonds can be formed, which depends on the protonation states of the His residues. Taken together, these CpHMD-based findings provide new insights into the identification of titratable His residues α87, α89, ß92, and ß97 that can affect Hb conformational switching under physiological pH conditions.


Hemoglobins , Histidine , Molecular Dynamics Simulation , Protein Conformation , Histidine/chemistry , Humans , Hydrogen-Ion Concentration , Hemoglobins/chemistry , Hydrogen Bonding , Heme/chemistry , Protons
6.
J Chem Phys ; 160(16)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38666573

Cooperativity is essential for the proper functioning of numerous proteins by allosteric interactions. Hemoglobin from Scapharca inaequivalvis (HbI) is a homodimeric protein that can serve as a minimal unit for studying cooperativity. We investigated the structural changes in HbI after carbon monoxide dissociation using time-resolved resonance Raman spectroscopy and observed structural rearrangements in the Fe-proximal histidine bond, the position of the heme in the pocket, and the hydrogen bonds between heme and interfacial water upon ligand dissociation. Some of the spectral changes were different from those observed for human adult hemoglobin due to differences in subunit assembly and quaternary changes. The structural rearrangements were similar for the singly and doubly dissociated species but occurred at different rates. The rates of the observed rearrangements indicated that they occurred synchronously with subunit rotation and are influenced by intersubunit coupling, which underlies the positive cooperativity of HbI.


Heme , Hemoglobins , Scapharca , Scapharca/chemistry , Hemoglobins/chemistry , Heme/chemistry , Animals , Spectrum Analysis, Raman , Humans , Carbon Monoxide/chemistry , Hydrogen Bonding
7.
ACS Sens ; 9(4): 2141-2148, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38578241

The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).


Glycated Hemoglobin , Methylene Blue , Glycated Hemoglobin/analysis , Humans , Methylene Blue/chemistry , Graphite/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , Hemoglobins/analysis , Hemoglobins/chemistry , Boronic Acids/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Limit of Detection , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry
8.
J Phys Chem B ; 128(14): 3383-3397, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38563384

Dehaloperoxidase (DHP) is a multifunctional hemeprotein with a functional switch generally regulated by the chemical class of the substrate. Its two isoforms, DHP-A and DHP-B, differ by only five amino acids and have an almost identical protein fold. However, the catalytic efficiency of DHP-B for oxidation by a peroxidase mechanism ranges from 2- to 6-fold greater than that of DHP-A depending on the conditions. X-ray crystallography has shown that many substrates and ligands have nearly identical binding in the two isoenzymes, suggesting that the difference in catalytic efficiency could be due to differences in the conformational dynamics. We compared the backbone dynamics of the DHP isoenzymes at pH 7 through heteronuclear relaxation dynamics at 11.75, 16.45, and 19.97 T in combination with four 300 ns MD simulations. While the overall dynamics of the isoenzymes are similar, there are specific local differences in functional regions of each protein. In DHP-A, Phe35 undergoes a slow chemical exchange between two conformational states likely coupled to a swinging motion of Tyr34. Moreover, Asn37 undergoes fast chemical exchange in DHP-A. Given that Phe35 and Asn37 are adjacent to Tyr34 and Tyr38, it is possible that their dynamics modulate the formation and migration of the active tyrosyl radicals in DHP-A at pH 7. Another significant difference is that both distal and proximal histidines have a 15-18% smaller S2 value in DHP-B, thus their greater flexibility could account for the higher catalytic activity. The distal histidine grants substrate access to the distal pocket. The greater flexibility of the proximal histidine could also accelerate H2O2 activation at the heme Fe by increased coupling of an amino acid charge relay to stabilize the ferryl Fe(IV) oxidation state in a Poulos-Kraut "push-pull"-type peroxidase mechanism.


Histidine , Polychaeta , Animals , Histidine/chemistry , Isoenzymes/metabolism , Hydrogen Peroxide/metabolism , Hemoglobins/chemistry , Peroxidases/chemistry , Peroxidase/chemistry , Polychaeta/chemistry , Polychaeta/metabolism , Crystallography, X-Ray
9.
Molecules ; 29(6)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38542837

Nonsymbiotic phytoglobins (nsHbs) are a diverse superfamily of hemoproteins grouped into three different classes (1, 2, and 3) based on their sequences. Class 1 Hb are expressed under hypoxia, osmotic stress, and/or nitric oxide exposure, while class 2 Hb are induced by cold stress and cytokinins. Both are mainly six-coordinated. The deoxygenated forms of the class 1 and 2 nsHbs from A. thaliana (AtHb1 and AtHb2) are able to reduce nitrite to nitric oxide via a mechanism analogous to other known globins. NsHbs provide a viable pH-dependent pathway for NO generation during severe hypoxia via nitrite reductase-like activity with higher rate constants compared to mammalian globins. These high kinetic parameters, along with the relatively high concentrations of nitrite present during hypoxia, suggest that plant hemoglobins could indeed serve as anaerobic nitrite reductases in vivo. The third class of nsHb, also known as truncated hemoglobins, have a compact 2/2 structure and are pentacoordinated, and their exact physiological role remains mostly unknown. To date, no reports are available on the nitrite reductase activity of the truncated AtHb3. In the present work, three representative nsHbs of the plant model Arabidopsis thaliana are presented, and their nitrite reductase-like activity and involvement in nitrosative stress is discussed. The reaction kinetics and mechanism of nitrite reduction by nsHbs (deoxy and oxy form) at different pHs were studied by means of UV-Vis spectrophotometry, along with EPR spectroscopy. The reduction of nitrite requires an electron supply, and it is favored in acidic conditions. This reaction is critically affected by molecular oxygen, since oxyAtHb will catalyze nitric oxide deoxygenation. The process displays unique autocatalytic kinetics with metAtHb and nitrate as end-products for AtHb1 and AtHb2 but not for the truncated one, in contrast with mammalian globins.


Arabidopsis , Nitrites , Animals , Nitrites/chemistry , Nitric Oxide/metabolism , Hemoglobins/chemistry , Nitrite Reductases/chemistry , Hypoxia , Arabidopsis/metabolism , Oxidation-Reduction , Mammals/metabolism
10.
Analyst ; 149(9): 2561-2572, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38501195

Oxygen (O2) binds to hemoglobin (Hb) in the lungs and is then released (dissociated) in the tissues. The Bohr effect is a physiological mechanism that governs the affinity of Hb for O2 based on pH, where a lower pH results in a lower Hb-O2 affinity and higher Hb-O2 dissociation. Hb-O2 affinity and dissociation are crucial for maintaining aerobic metabolism in cells and tissues. Despite its vital role in human physiology, Hb-O2 dissociation measurement is underutilized in basic research and in clinical laboratories, primarily due to the technical complexity and limited throughput of existing methods. We present a rapid Hb-O2 dissociation measurement approach by leveraging the Bohr effect and detecting the optical shift in the Soret band that corresponds to the light absorption by the heme group in Hb. This new method reduces Hb-O2 dissociation measurement time from hours to minutes. We show that Hb deoxygenation can be accelerated chemically at the optimal pH of 6.9. We show that time and pH-controlled deoxygenation of Hb results in rapid and distinct conformational changes in its tertiary structure. These molecular conformational changes are manifested as significant, detectable shifts in Hb's optical absorption spectrum, particularly in the characteristic Soret band (414 nm). We extensively validated the method by testing human blood samples containing normal Hb and Hb variants. We show that rapid Hb-O2 dissociation can be used to screen for and detect Hb-O2 affinity disorders and to evaluate the function and efficacy of Hb-modifying therapies. The ubiquity of optical absorption spectrophotometers positions this approach as an accessible, rapid, and accurate Hb-O2 dissociation measurement method for basic research and clinical use. We anticipate this method's broad adoption will democratize the diagnosis and prognosis of Hb disorders, such as sickle cell disease. Further, this method has the potential to transform the research and development of new targeted and genome-editing-based therapies that aim to modify or improve Hb-O2 affinity.


Hemoglobins , Oxygen , Humans , Hemoglobins/chemistry , Hemoglobins/metabolism , Hemoglobins/analysis , Oxygen/metabolism , Oxygen/chemistry , Hydrogen-Ion Concentration
11.
J Phys Chem B ; 128(12): 2853-2863, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38488160

The objective of our work is to investigate the impact of pH on the structural changes of hemoglobin that affect its O2 affinity, known as the Bohr effect. We conducted molecular dynamics (MD) simulations to explore the transition between various hemoglobin states based on the protonation states (PSs) of two histidine residues (ßHis143 and ßHis146). We conducted the MD simulations from the R and R2 states with three sets of PSs assuming pH values of 7.0, 6.5, and 5.5, aiming to investigate the influence of pH on hemoglobin behavior. Our results demonstrated that the protonated His residues promote the state transition from the R state to the R2 state and encourage elongation of the distance between the ß1-ß2 subunits by weakening the inter-subunit interactions in the R state. These observations, aligning with the experimental evidence, indicate that the R2 state typically crystallizes under low pH conditions. Our findings suggest that the relationship between the PSs and the structural stability of the R state plays a role in the acid and alkaline Bohr effect.


Hemoglobins , Histidine , Histidine/chemistry , Hemoglobins/chemistry , Oxyhemoglobins , Hydrogen-Ion Concentration
12.
Talanta ; 274: 125972, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38547844

This study developed a novel organic-inorganic hybrid composite, shortly as GO-PEG-LDHs, by self-assembly of exfoliated Mg-Al layer double hydroxide (LDHs) on the polyethylene glycol (PEG) grafted graphene oxide (GO) to achieve the selective adsorption of hemoglobin (Hb). The prepared GO-PEG-LDHs has a hierarchical structure with a homogeneous loading of exfoliated LDHs nano-sheets on its surface. The adsorption test reveals that GO-PEG-LDHs exhibits an adsorption efficiency of 95.03% for Hb and 3.45% for bovine serum albumin (BSA). The adsorption of Hb follows the Langmuir model, with an ultrahigh adsorption capacity of 55248.6 mg/g, which is higher than any previously reported materials. Meanwhile, the adsorbed Hb can be efficiently recovered through elution with a 50 mM Tris-HCl buffer, with an elution efficiency of 80.77%. Circular dichroism (CD) spectra indicate no conformational change for Hb during the process of adsorption/desorption. Furthermore, the composite demonstrates the ability to selectively isolate Hb in the presence of interfering protein BSA, indicating its potential for practical applications.


Graphite , Hemoglobins , Hydroxides , Polyethylene Glycols , Graphite/chemistry , Hemoglobins/chemistry , Adsorption , Polyethylene Glycols/chemistry , Hydroxides/chemistry , Cattle , Nanostructures/chemistry , Animals , Aluminum/chemistry , Serum Albumin, Bovine/chemistry
13.
Nanoscale ; 16(8): 4308-4316, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38353599

Iron-regulated surface determinant B (IsdB) is a surface protein of Staphylococcus aureus that plays essential roles in host cell invasion by mediating both bacterial adhesion and hemic iron acquisition. Single-molecule experiments have recently revealed that the binding of IsdB to vitronectin and integrins is dramatically strengthened under mechanical stress conditions, promoting staphylococcal adhesion. Here we conducted atomic force spectroscopy (AFS) measurements of the interaction between IsdB and hemoglobin (Hb), in both its oxidized (metHb) and reduced forms (HbCO). While the former represents the natural substrate for IsdB, the latter is resistant to heme extraction. For the unbinding between IsdB and HbCO, we obtained a linear trend in the Bell-Evans plot, indicative of a weakening of the interaction upon mechanical stress. For the unbinding between IsdB and metHb, we found similar behavior at low loading rates. Remarkably, a non-linear trend of the complex interaction force was detected at higher force-pulling rates. Such behavior may provide some cues to the ability of IsdB to form stress-dependent bonds also with Hb, possibly enabling a more efficient heme transfer through stabilization of the transient (in vivo) IsdB-Hb complex.


Bacterial Proteins , Iron , Bacterial Proteins/metabolism , Iron/metabolism , Hemoglobins/chemistry , Heme/chemistry , Heme/metabolism , Membrane Proteins/metabolism , Protein Binding
14.
J Inorg Biochem ; 252: 112473, 2024 03.
Article En | MEDLINE | ID: mdl-38199051

The enzyme dehaloperoxidase (DHP) found in the marine worm Amphitrite ornata is capable of enzymatic peroxidation of 2,4-dichlorophenol (DCP) and 2,4-dibromophenol (DBP). There is also at least one parallel oxidative pathway and the major products 2-chloro-1,4-benzoquinone (2-ClQ) and 2-bromo-1,4-benzoquinone (2-BrQ) undergo aspontaneous secondary hydroxylation reaction. The oxidation and hydroxylation reactions have been monitored by UV-visible spectroscopy, High Performance Liquid Chromatography (HPLC), and mass spectrometry. Evidence from time-resolved UV-visible spectroscopy suggests that the hydroxylations of 2-ClQ and 2-BrQ in the presence of hydrogen peroxide (H2O2) are non-enzymatic spontaneous processes approximately ∼10 and âˆ¼ 5 times slower, respectively, than the enzymatic oxidation of DCP or DBP by DHP in identical solvent conditions. The products 2-ClQ and 2-BrQ have λmaxat 255 nm and 260 nm, respectively. Both substrates, DCP and DBP, react to form a parallel product peaked at 240 nm on the same time scale as the formation of 2-ClQ and 2-BrQ. The 240 nm band is not associated with the hydroxylation process, nor is it attributable to the catechol 3,5-dihalobenzene-1,3-diol observed by mass spectrometry. One possible explanation is that muconic acid is formed as a decomposition product, which could follow decomposition either the catechol or hydroxyquinone. These reactions give a more complete understanding of the biodegradation of xenobiotics by the multi-functional hemoglobin, DHP, in Amphitrite ornata. SYNOPSIS: The decomposition of 2,4-dihalophenols catalyzed by dehaloperoxidase was studied by UV-visible spectroscopy, High Performance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry. Spectroscopic evidence suggests two major products, which we propose are 2-halo-1,4-benzoquinone and 2-halomuconic acid. These complementary techniques give a high-level view of the degradation of xenobiotics in marine ecosystems.


Hydrogen Peroxide , Peroxidases , Hydrogen Peroxide/chemistry , Peroxidases/metabolism , Ecosystem , Hemoglobins/chemistry , Phenols/metabolism , Catechols
15.
Int J Biol Macromol ; 254(Pt 3): 128069, 2024 Jan.
Article En | MEDLINE | ID: mdl-37967600

Perfluorooctane sulfonate (PFOS), a representative of perfluorinated compounds in industrial and commercial products, has posed a great threat to animals and humans via environmental exposure and dietary consumption. Herein, we investigated the effects of PFOS binding on the redox state and stability of two hemoproteins (hemoglobin (Hb) and myoglobin (Mb)). Fluorescence spectroscopy, circular dichroism and UV-vis absorption spectroscopy demonstrated that PFOS could induce the conformational changes of proteins along with the exposure of heme cavity and generation of hemichrome, which resulted in the increased release of free hemin. After that, free hemin liberated from hemoproteins led to reactive oxygen species formation, lipid peroxidation, cell membrane damage and loss of cell viability in vascular endothelial cells, while neither Hb nor Mb did show cytotoxicity. Chemical inhibitors of ferroptosis effectively mitigated hemin-caused toxicity, identifying the hemin-dependent ferroptotic cell death mechanisms. These data demonstrated that PFOS posed a potential threat of toxicity through a mechanism which involved its binding to hemoproteins, decreased oxygen transporting capacity, and increased hemin release. Altogether, our findings elucidate the binding mechanisms of PFOS with two hemoproteins, as well as possible risks on vascular endothelial cells, which would have important implications for the human and environmental toxicity of PFOS.


Endothelial Cells , Hemin , Animals , Humans , Hemin/metabolism , Endothelial Cells/metabolism , Oxidation-Reduction , Hemoglobins/chemistry , Circular Dichroism , Myoglobin/metabolism
16.
Free Radic Biol Med ; 210: 237-245, 2024 01.
Article En | MEDLINE | ID: mdl-38042224

Nitrite (NO2-) interacts with hemoglobin (Hb) in various ways to regulate blood flow. During hypoxic vasodilation, nitrite is reduced by deoxyHb to yield nitric oxide (NO). While NO, a hydrophobic gas, could freely diffuse across the cell membrane, how the reactant nitrite anion could permeate through the red blood cell (RBC) membrane remains unclear. We hypothesized that Cl-/HCO3- anion exchanger-1 (AE1; band 3) abundantly embedded in the RBC membrane could transport NO2-, as HCO3- and NO2- exhibit similar hydrated radii. Here, we monitored NO/N2O3 generated from NO2- inside human RBCs by DAF-FM fluorophore. NO2-, not NO3-, increased intraerythrocytic DAF-FM fluorescence. To test the involvement of AE1-mediated transport in intraerythrocytic NO/N2O3 production from nitrite, we lowered Cl- or HCO3- in the RBC-incubating buffer by 20 % and indeed observed slower rise of the DAF-FM fluorescence. Anti-extracellular AE1, but not anti-intracellular AE1 antibodies, reduced the rates of NO formation from nitrite. The AE1 blocker DIDS similarly reduced the rates of NO/N2O3 production from nitrite in a dose-dependent fashion, confirming that nitrite entered RBCs through AE1. Nitrite inside the RBCs reacted with both deoxyHb and oxyHb, as evidenced by 6.1 % decrease in deoxyHb, 14.7 % decrease in oxyHb, and 20.7 % increase in methemoglobin (metHb). Lowering Cl- in the milieu equally delayed metHb production from nitrite-oxyHb and nitrite-deoxyHb reactions. Thus, AE1-mediated NO2- transport facilitates NO2--Hb reactions inside the red cells, supporting NOx metabolism in circulation.


Nitric Oxide , Nitrites , Humans , Nitrites/metabolism , Nitric Oxide/metabolism , Nitrogen Dioxide/metabolism , Hemoglobins/chemistry , Erythrocytes/metabolism , Methemoglobin , Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocyte Membrane/metabolism
17.
Biomater Adv ; 156: 213698, 2024 Jan.
Article En | MEDLINE | ID: mdl-38006785

The transfusion of donor red blood cells (RBCs) is seriously hampered by important drawbacks that include limited availability and portability, the requirement of being stored in refrigerated conditions, a short shelf life or the need for RBC group typing and crossmatching. Thus, hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) which make use of the main component of RBCs and the responsible protein for O2 transport, hold a lot of promise in modern transfusion and emergency medicine. Despite the great progress achieved, it is still difficult to create HBOCs with a high Hb content to attain the high O2 demands of our body. Herein a metal-phenolic self-assembly approach that can be conducted in water and in one step to prepare nanoparticles (NPs) fully made of Hb (Hb-NPs) is presented. In particular, by combining Hb with polyethylene glycol, tannic acid (TA) and manganese ions, spherical Hb-NPs with a uniform size around 350-525 nm are obtained. The functionality of the Hb-NPs is preserved as shown by their ability to bind and release O2 over multiple rounds. The binding mechanism of TA and Hb is thoroughly investigated by UV-vis absorption and fluorescence spectroscopy. The binding site number, apparent binding constant at two different temperatures and the corresponding thermodynamic parameters are identified. The results demonstrate that the TA-Hb interaction takes place through a static mechanism in a spontaneous process as shown by the decrease in Gibbs free energy. The associated increase in entropy suggests that the TA-Hb binding is dominated by hydrophobic interactions.


Blood Substitutes , Nanoparticles , Oxygen/chemistry , Oxygen/metabolism , Blood Substitutes/chemistry , Hemoglobins/chemistry , Hemoglobins/metabolism , Nanoparticles/chemistry , Metals
18.
Biochimie ; 219: 130-141, 2024 Apr.
Article En | MEDLINE | ID: mdl-37981225

The erythrocruorin of Lumbricus terrestris (LtEc) is a relatively large macromolecular assembly that consists of at least four different hemoglobin subunits (A, B, C, and D) and four linker subunits (L1, L2, L3, and L4). The complexity and stability of this large structure make LtEc an attractive hemoglobin-based oxygen carrier that could potentially be used as a substitute for donated red blood cells. However, the sequences of the LtEc subunit sequences must be determined before a scalable recombinant expression platform can be developed. The goal of this study was to sequence the L. terrestris genome to identify the complete sequences of the LtEc subunit genes. Our results revealed multiple homologous genes for each subunit (e.g., two homologous A globin genes; A1 and A2), with the exception of the L4 linker. Some of the homologous genes encoded identical peptide sequences (C1 and C2, L1a and L1b), while cDNA and mass spectrometry experiments revealed that some of the homologs are not expressed (e.g., A2). In contrast, multiple sequences for the B, D, L2, and L4 subunits were detected in LtEc samples. These observations reveal novel degeneracy in LtEc and other annelids, along with some new revisions to its previously published peptide sequences.


Erythrocruorins , Oligochaeta , Animals , Erythrocruorins/metabolism , Oligochaeta/chemistry , Oligochaeta/metabolism , Hemoglobins/chemistry , Mass Spectrometry , Peptides/metabolism
19.
J Inorg Biochem ; 250: 112387, 2024 01.
Article En | MEDLINE | ID: mdl-37914583

Most hemoproteins display an all-α-helical fold, showing the classical three on three (3/3) globin structural arrangement characterized by seven or eight α-helical segments that form a sandwich around the heme. Over the last decade, a completely distinct class of heme-proteins called nitrobindins (Nbs), which display an all-ß-barrel fold, has been identified and characterized from both structural and functional perspectives. Nbs are ten-stranded anti-parallel all-ß-barrel heme-proteins found across the evolutionary ladder, from bacteria to Homo sapiens. Myoglobin (Mb), commonly regarded as the prototype of monomeric all-α-helical globins, is involved along with the oligomeric hemoglobin (Hb) in diatomic gas transport, storage, and sensing, as well as in the detoxification of reactive nitrogen and oxygen species. On the other hand, the function(s) of Nbs is still obscure, even though it has been postulated that they might participate to O2/NO signaling and metabolism. This function might be of the utmost importance in poorly oxygenated tissues, such as the eye's retina, where a delicate balance between oxygenation and blood flow (regulated by NO) is crucial. Dysfunction in this balance is associated with several pathological conditions, such as glaucoma and diabetic retinopathy. Here a detailed comparison of the structural, spectroscopic, and functional properties of Mb and Nbs is reported to shed light on the similarities and differences between all-α-helical and all-ß-barrel heme-proteins.


Globins , Myoglobin , Humans , Globins/chemistry , Heme/chemistry , Hemoglobins/chemistry , Myoglobin/chemistry , Spectrum Analysis
20.
Biophys Chem ; 304: 107127, 2024 01.
Article En | MEDLINE | ID: mdl-37952498

The preparation of nanoparticles (NPs) based on hemoglobin (Hb) with a fully biocompatible methodology is presented. The spontaneous formation of electrostatic complexes of Hb with chondroitin sulfate (CS) at pH 4 in the polysaccharide/protein mass ratio regime where charge neutrality is met leads to spherical nanostructures with monomodal hydrodynamic radii distribution in the range of 50-100 nm. The integrity of the electrostatic complexes is disturbed at pH 7 as the net electric charge of Hb is very low. Treating the NPs at mildly elevated temperature stabilizes them against the pH increase taking advantage of Hb's ability of unfolding and self-associating upon thermal treatment. The NPs surface charge is pH-tunable and changes from positive to strongly negative upon pH increase to 7 proving the presence of negative surface patches of Hb and CS segments in their exterior. The α-helix content of Hb does not change significantly by thermal treatment. The NPs are found to bind the bioactive compounds curcumin and ß-carotene and are stable in solutions with high salt content. This investigation introduces a straightforward method to formulate Hb in NPs with possibilities in the nanodelivery of nutrients and drugs.


Curcumin , Nanoparticles , Nanostructures , Chondroitin Sulfates/chemistry , Nanoparticles/chemistry , Curcumin/chemistry , Hemoglobins/chemistry
...